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Abstract
As the Internet keeps on growing, so does the interest of mali-
cious actors. While the Internet has become widespread and
popular to interconnect billions of people, this interconnectiv-
ity also simplifies the spread of malicious software. Specif-
ically, JavaScript has become a popular attack vector, as it
enables to stealthily exploit bugs and further vulnerabilities to
compromise the security and privacy of Internet users. In this
thesis, we approach these issues by proposing several systems
to statically analyze real-world JavaScript code at scale.

First, we focus on the detection of malicious JavaScript
samples. To this end, we propose two learning-based
pipelines, which leverage syntactic, control and data flow-
based features to distinguish benign from malicious inputs.
Subsequently, we evaluate the robustness of such static mali-
cious JavaScript detectors in an adversarial setting. For this
purpose, we introduce a generic camouflage attack, which
consists in rewriting malicious samples to reproduce existing
benign syntactic structures. Finally, we consider vulnerable
browser extensions. In particular, we abstract an extension
source code at a semantic level, including control, data, and
message flows, and pointer analysis, to detect suspicious data
flows from and toward an extension privileged context. Over-
all, we report on 184 Chrome extensions that attackers could
exploit to, e.g., execute arbitrary code in a victim’s browser.

1 Introduction

The Web has become the most popular software platform,
used by billions of people every day. Given its popularity, it
naturally attracts the interest of malicious actors who try to
leverage the Web as a vector for attacking their victims’ ma-
chines. In particular, the first step to harm a victim’s machine
often relies on JavaScript payloads [13, 21]. While JavaScript
was initially designed to create sophisticated and interactive
web pages, it is also used to perform malicious activities, such
as drive-by downloads or crypto mining.

In this thesis, we focus on two orthogonal threat mod-
els: malicious JavaScript and benign-but-buggy (vulnerable)
JavaScript code. We use the term malicious JavaScript to refer
to code designed by malicious actors with the aim of harming
victims. Ultimately malicious JavaScript will likely exploit
vulnerabilities to download and execute malware. On the con-
trary, benign-but-buggy JavaScript relates to code designed

by well-intentioned developers but which contains some vul-
nerabilities that malicious actors could exploit. Due to their
elevated privileges compared to web pages, we chose to fo-
cus on browser extensions whose main logic is written in
JavaScript. Ultimately, vulnerable JavaScript in a browser
extension can lead to, e.g., universal cross-site scripting (i.e.,
the ability to execute code in any websites, even without a
vulnerability in the websites themselves) or sensitive user data
exfiltration to any websites.

Both malicious and vulnerable JavaScript code can be lever-
aged as attack vectors to compromise the security and privacy
of Internet users. In this thesis, we develop advanced meth-
ods to uncover such attacks against end users. As dynamic
analysis is costly, can be tricked by malware, and has a lim-
ited code coverage, we chose to statically analyze JavaScript
insecurities at scale. We make four main contributions:

• JAST: An AST-Based Malicious JavaScript Detector: We
present our machine learning-based system JAST, which
detects malicious JavaScript with an accuracy of 99.5%.

• JSTAP: A Static Pre-Filter for Malicious JavaScript De-
tection: We introduce our modular detector JSTAP, which
leverages semantic information to pre-filter JavaScript sam-
ples likely to be malicious (accuracy: 99.73%).

• HIDENOSEEK: Camouflaging Malicious JavaScript in Be-
nign ASTs: With HIDENOSEEK, we propose a generic at-
tack against static malicious JavaScript detectors. We show
that they are inept to handle our crafted samples, which
they misclassify over 99.95% of the time (false negatives).

• DOUBLEX: Statically Analyzing Browser Extensions at
Scale: Beyond malicious JavaScript, we design DOUBLEX
to detect vulnerable data flows in browser extensions. We
report on 184 vulnerable extensions. In addition, we high-
light DOUBLEX high precision (89%) and recall (93%).

This thesis is based on the four following papers, which
have all been published at peer-reviewed conferences:

[A1] Fass, A., Krawczyk, R. P., Backes, M., and Stock, B.
JAST: Fully Syntactic Detection of Malicious (Obfuscated)
JavaScript. In: DIMVA. Code repository: https://github.
com/Aurore54F/JaSt. 2018.

[A2] Fass, A., Backes, M., and Stock, B. JSTAP: A Static Pre-
Filter for Malicious JavaScript Detection. In: ACSAC. Code:
https://github.com/Aurore54F/JStap. 2019.

[A3] Fass, A., Backes, M., and Stock, B. HIDENOSEEK: Camou-
flaging Malicious JavaScript in Benign ASTs. In: ACM CCS.
Code repository: https : / / github . com / Aurore54F /
HideNoSeek. 2019.
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(a) Benign vs. malicious
AST; those differences can
be leveraged for an accurate
detection

(b) Benign AST vs. ma-
licious AST rewritten by
HIDENOSEEK

Figure 1: Schematic depiction of different ASTs

[A4] Fass, A., Somé, D. F., Backes, M., and Stock, B. DOUBLEX:
Statically Detecting Vulnerable Data Flows in Browser Ex-
tensions at Scale. In: ACM CCS. Code repository: https:
//github.com/Aurore54F/DoubleX. 2021.

In the spirit of open science, for reproducibility, follow-up
work, and practical detection of malicious JavaScript sam-
ples and vulnerable browser extensions, the corresponding
research prototypes are all available on GitHub.

2 JAST: An AST-Based Malicious JavaScript
Detector

Attackers abuse JavaScript to, e.g., exploit bugs in the browser
or perform drive-by downloads. To hinder the analysis and
the detection of such nefarious scripts, malicious actors take
advantage of code obfuscation, which foils, e.g., signature-
based detection. It has been shown that machine learning-
based approaches are effective to learn features typical of
benign vs. malicious JavaScript samples [5, 16] (2011). Still,
the malicious JavaScript landscape has evolved since 2011,
when few obfuscation schemes were being used. Besides, due
to the large volume of JavaScript files in the wild, executing
all of them to check for maliciousness is not realistic anymore.

To overcome these challenges, we propose JAST, our fully
static system, which distinguishes malicious from benign
(even obfuscated) JavaScript samples with an accuracy of
almost 99.5%.

2.1 JAST

JAST abstracts the code of a JavaScript sample to its AST
(Abstract Syntax Tree). This way, we eliminate the artificial
noise induced, e.g., by identifier renaming, to solely focus
on structural constructs. In particular, we find that benign
and malicious JavaScript samples have a different AST (cf.
Figure 1a). We capture such discrepancies automatically, by
extracting syntactic units from the AST. To preserve the units’
context, e.g., a for loop or a try/catch block, we extract
substrings of length 4 (namely 4-grams), whose frequency
we analyze. We find that these features differ between benign
and malicious samples, enabling our random forest classifier
to learn to automatically distinguish them (cf. Figure 1a).

Figure 2: Architecture of JSTAP

2.2 Detecting Malicious JavaScript Samples
We evaluated JAST on over 105,000 JavaScript samples (20k
benign and 85k malicious). JAST correctly classifies 99.48%
of our benign dataset while still detecting 99.46% of our mali-
cious samples, thereby outperforming related work [5, 16]. As
both our benign and malicious samples are, for the most part,
obfuscated, this demonstrates the resilience of our system to
this specific form of evasion. In addition, we studied and dis-
cussed the evolution of JAST accuracy over one year. Finally,
we leveraged different classes of malicious JavaScript sam-
ples, e.g., emails vs. exploit kits, and showcased that syntax-
based features are core in classifying JavaScript inputs. Over-
all, these findings highlight the practical applicability of JAST
to detect malicious JavaScript samples in the wild.

3 JSTAP: A Static Pre-Filter for Malicious
JavaScript Detection

Even though JAST has a very high detection accuracy, it is
not infallible and still leads to misclassifications. In fact, it
lacks semantic information to go beyond solely relying on the
code syntax. With JSTAP, we explore to what extent we can
go beyond the code structure by also considering control and
data flow information to detect malicious JavaScript inputs.

3.1 JSTAP

JSTAP is our modular malicious JavaScript detector. As shown
in Figure 2, JSTAP can leverage five ways of abstracting
JavaScript code, with differing levels of context and semantic
information. In particular, JSTAP can rely on tokens (i.e.,
a linear conversion of the code into abstract symbols), the
AST, CFG (Control Flow Graph), DFG (Data Flow Graph),
or PDG (Program Dependency Graph). We generate these
graphs statically by adding control and/or data flow edges to
the AST.1 In addition, JSTAP regroups two ways of extracting
features: n-grams (as for JAST) or considering variable value
information. This way, JSTAP is composed of ten modules,
which can be used separately or combined. For each module,
we finally train a random forest classifier to distinguish benign
from malicious JavaScript inputs.

1In our thesis, we thoroughly describe and illustrate how we build these
graphs and discuss to what extent they differ from the original definition of
Allen [1] and Ferrante et al. [9].
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3.2 JSTAP Module Combination
We evaluated JSTAP on our dataset totaling over 270,000
JavaScript samples (130k malicious and 140k benign). JSTAP
has an accuracy of up to almost 99.5% and outperforms JAST
and the closely related work CUJO [16] and ZOZZLE [5]–that
we reimplemented–all of which we tested on our dataset.

To further improve our detection accuracy, we combined
the predictions of several JSTAP modules. Such a pipeline en-
ables us to classify almost 93% of our dataset with a detection
accuracy of 99.73% and a remaining 6.5% with an accuracy
still over 99%, meaning that less than 1% of our initial dataset
would require additional scrutiny. Similarly to JAST, JSTAP
is open source and can be used to accurately detect malicious
JavaScript code practically and at scale.

4 HIDENOSEEK: Camouflaging Malicious
JavaScript in Benign ASTs

We have previously shown that our AST-based detector JAST
and our modular and more semantic-oriented detector JSTAP
are both very accurate to distinguish benign from malicious
JavaScript inputs. Next, we discuss and evaluate the robust-
ness of such static classifiers in an adversarial setting.

4.1 Motivation
Static detectors need to be accurate to not let malicious files
through. However, it has been shown that such machine
learning-based detectors are susceptible to adversarial attacks,
e.g., when an adversary tries to statistically enhance the pro-
portion of benign features [2, 10, 15, 17, 20], to stochastically
manipulate samples till they change classification [6, 22],
or leverage transferability properties to induce misclassifi-
cations [7, 19]. Still, previous work considers a very strong
attacker, with insider information (e.g., target model inter-
nals, training dataset, or at least assigned classification score),
and is tailored to attack one specific detector only. With HI-
DENOSEEK, though, we explore to what extent we can present
a generic attack against static malicious JavaScript detectors.

4.2 HIDENOSEEK

Our classifiers JAST and JSTAP are very precise at detecting
malicious JavaScript inputs, because they leverage the fact
that benign and malicious JavaScript samples generally have
a different AST (cf. Figure 1a). Therefore, a generic way of
attacking such static systems consists in rewriting malicious
JavaScript samples so that they have exactly the same AST
as existing benign scripts (cf. Figure 1b) while retaining the
initial malicious semantics. We implemented this approach in
our fully automated system HIDENOSEEK.

HIDENOSEEK takes a benign and a malicious JavaScript
sample as input and first builds their AST, which it enhances
with control and data flow information. Then, it looks for iden-
tical sub-ASTs between the benign and the malicious graphs
(i.e., isomorphic subgraphs). If HIDENOSEEK can find all

malicious syntactic structures in benign trees, it replaces the
impacted benign sub-ASTs with the syntactically identical
malicious ones and adjusts the benign data flows–without
changing the AST–to retain the malicious semantics. Finally,
HIDENOSEEK generates the code back from the modified
AST. This way, HIDENOSEEK crafts samples with the same
AST as the original benign inputs while retaining the mali-
cious semantics of the original malicious samples.

4.3 Evasive Sample Generation

To evaluate our attack, we first collected over 120,000 mali-
cious JavaScript samples. After clustering and deobfuscation,
we retain 23 malicious payloads, which we refer to as seeds.
Overall, we could leverage 22 out of 23 seeds to produce
over 90,000 malware samples, which exactly reproduce ASTs
from Alexa Top 10k. In addition, on average, we can repro-
duce the syntactic structure of a given Alexa Top 10 web page
with 14 different seeds. Similarly to Android in repackaged
applications, HIDENOSEEK documents could be presented
as the original version for malicious purposes. This attack
would be especially hard to spot due to the perfect mapping
onto benign ASTs.

4.4 Evaluation Against Real-World Classi-
fiers

We evaluated our camouflage attack in practice, by classifying
HIDENOSEEK samples with JAST and JSTAP (including mod-
ule combination), and our reimplementations of CUJO [16]
and ZOZZLE [5].

In a first scenario, we considered that these classifiers were
not aware of our attack (i.e., no HIDENOSEEK samples in
the training set). As expected, these detectors all misclassify
between 99.95 and 100% of our HIDENOSEEK samples as
benign. This highlights the success of our attack, which gen-
eralizes to multiple static detectors using different categories
of features (e.g., tokens, AST, PDG, etc.).

In a second scenario, we leveraged the fact that machine
learning-based detectors are able to learn: we added some
HIDENOSEEK samples in the training set. This time, only
4.04-8.44% of our HIDENOSEEK samples are misclassified.
Still, by design, HIDENOSEEK reproduces existing benign
syntax; thus, we subsequently classified the benign files used
for our camouflage attack. This time, 88.74-100% of them
are misclassified as malicious. As previously, our attack gen-
eralizes to multiple categories of static detectors, which are
all inept to handle our HIDENOSEEK crafted samples: either
they have an extremely high number of false negatives (first
scenario) or of false positives (second scenario).

However, for the detectors that do not solely rely on AST,
we observe between 0.4 and 11% of the samples that changed
classification between the benign and malicious variants.
While this is too low to provide a defense mechanism, this
may be an interesting avenue for future work. In our thesis,
we subsequently discuss potential detection strategies.
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5 DOUBLEX: Statically Analyzing Browser
Extensions at Scale

Besides malicious JavaScript, attackers can also leverage
vulnerable JavaScript code to perform malicious activities.
Browser extensions are a target of choice for malicious actors,
as extensions have elevated privileges compared to web pages.
For example, to be effective, an ad-blocker needs to read and
write web page content or intercept network requests.

This way, while browser extensions are popular to improve
user browsing experience, they may also introduce severe
security and privacy threats and put their large user base at
risk, e.g., leading to universal cross-site scripting.

Prior work mostly focusses on detecting malicious exten-
sions [3, 11, 12, 14]. On the contrary, vulnerable extensions
are more challenging to detect due to their inherently benign
intent (as they are not doing anything suspicious). While
EmPoWeb [18] focusses on vulnerable extensions, it reports
3,300 / 66,000 extensions as suspicious. Besides the huge
manual validation effort, its false-positive rate of 95% renders
it inept to be deployed in practice. With DOUBLEX, we ad-
dress these challenges by proposing a precise static analyzer
that detects vulnerable extensions at scale.

5.1 Threat Model
To exploit vulnerable extensions, we consider two attacker
scenarios: a Web Attacker and a Confused Deputy. In fact,
browser extensions can communicate with web pages (and
other extensions) over messages. Therefore, a web page (or
another extension) under the control of an attacker can send
malicious payloads to a vulnerable extension, tailored to ex-
ploit its flaws. This way, an attacker can elevate their priv-
ileges to the capabilities of an extension. In particular, an
attacker could gain the capability of, e.g., executing arbitrary
code in any websites (even without a vulnerability in the web-
sites themselves), making arbitrary cross-origin requests even
when a user is logged in, or exfiltrating sensitive user data.

Overall, such vulnerabilities originate from the fact that
external actors (i.e., an attacker) can either control the input of
security-critical APIs in extensions or receive sensitive user
data from a vulnerable extension. Therefore, to detect such
flaws, we look for suspicious external data flows in extensions.

5.2 DOUBLEX
To this end, we introduce our static analyzer DOUBLEX. DOU-
BLEX abstracts the source code of an extension with a graph,
including control and data flow, and pointer analysis informa-
tion. This way, DOUBLEX can handle, e.g., aliased variables
or APIs not written in plain text. In addition, DOUBLEX mod-
els the intricate message interactions between an extension’s
components with a message flow. It also reports on external
messages and flags them as attacker controllable. This way, it
can perform a data flow analysis to identify any path between
an external actor (i.e., an attacker) and security- or privacy-
critical APIs in extensions. Figure 3 presents a schematic

Figure 3: Schematic depiction of the way DOUBLEX pro-
cesses an extension: 1) for each extension component, DOUBLEX
builds their AST enhanced with control (green) and data (blue) flow
edges; 2) DOUBLEX models message (orange) interactions within
and outside of an extension; 3) DOUBLEX performs a data flow
analysis to detect any path (purple) between an attacker and security-
or privacy-critical APIs in an extension

depiction of the way DOUBLEX analyzes an extension. In par-
ticular, we consider integrity (attacker-controllable data enters
a sink) and confidentiality (user sensitive data is exfiltrated)
threats in tracking relevant data flows. Finally, DOUBLEX
summarizes its findings in a fine-grained data flow report.

5.3 Large-Scale Analysis of Extensions
We evaluated DOUBLEX on 155,000 Chrome extensions,
which we collected in 2021. Of those, DOUBLEX reports 309
suspicious data flows (in 278 extensions) between an attacker
and the security- and privacy-critical extension APIs we con-
sidered. We manually reviewed these reports and confirm that
89% of the suspicious data flows reported can effectively be
influenced by external actors. Specifically, we could exploit
209 of these data flows (in 184 extensions) under our threat
model. Of those, almost 40% can be exploited by any web-
sites. Overall, the 184 vulnerable extensions that DOUBLEX
detected impact between 2.4 and 2.9 million users.

To evaluate false negatives (i.e., vulnerable extensions
we may have missed), as a best-effort strategy, we evalu-
ated DOUBLEX on the vulnerable extension set from Em-
PoWeb [18]. Overall, we could detect 93% of known flaws.

5.4 Life Cycle of Vulnerable Extensions
We also evaluated DOUBLEX on over 165,000 Chrome exten-
sions from 2020. This enables us to reason about the life cycle
of vulnerable extensions. In particular, 87% of the extensions
vulnerable in 2021 were already vulnerable in 2020, despite
our disclosure in 2020 and half of those extensions having
been updated in between. This finding highlights the need
for a system like DOUBLEX to prevent vulnerable extensions
from entering the Chrome Web Store in the first place, all the
more as they tend to stay in the Store.

Given the high precision (89%) and recall (93%) of
DOUBLEX, and its median run-time of 2.5 seconds per ex-
tension, we believe that it could be integrated into the vetting
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process conducted by Google2 to detect vulnerable extensions
before large-scale deployment. In addition, to raise awareness
and enable developers to automatically detect such security
and privacy threats, we made DOUBLEX publicly available.

6 Discussion and Conclusion

This thesis revolves around studying JavaScript security
through static analysis. In particular, we developed advanced
methods to uncover JavaScript-based attacks, which would
compromise the security and privacy of Internet users. We
focussed on two orthogonal threat models, namely malicious
JavaScript code and benign-but-buggy (vulnerable) JavaScript
in browser extensions.

First, we designed JAST and JSTAP to detect malicious
JavaScript samples at scale. Our fully static learning-based
pipelines rest on the AST, enhanced with control and data flow
information, to distinguish benign from malicious JavaScript
code with an accuracy of 99.5-99.73%. For practical applica-
bility, we made our source code publicly available.

Then, we focussed on the robustness of such static detec-
tors. With HIDENOSEEK, we introduce a generic camou-
flage attack, which consists in rewriting malicious JavaScript
samples so that they have exactly the same AST as exist-
ing benign scripts. This leads to a no-win situation for static
detector operators, who have to choose between either an
extremely high number of false positives (88.74-100%) or
false negatives (99.95-100%). More generally, we believe that
our HIDENOSEEK attack is a good test-bench for machine
learning-based detection, as the lessons learned from our study
can provide insights into the robustness of other systems in
different domains. Naturally, we hope that our work will pave
the way for additional research in the malware detection field
and lead to the design of fast and more robust systems.

Finally, we considered an orthogonal threat model, namely
vulnerable browser extensions. We built DOUBLEX, which
reports suspicious external data flows in browser extensions
with a high precision (89%) and recall (93%). Overall, we
detected 184 Chrome extensions exploitable under our threat
model, 87% of which were already vulnerable one year ago.
With our approach–that we made publicly available–we hope
to increase the awareness of well-intentioned developers to-
ward unsafe programming practices leading to security and/or
privacy issues. We believe that integrating DOUBLEX into
Chrome vetting system could contribute to detecting such
flaws before large-scale deployment of the impacted exten-
sion; thus, contribute to the protection of end users’ security
and privacy on the Internet.
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